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Abstract

By the time children begin to rapidly acquire new word mean-
ings they are already able to determine the grammatical cat-
egory of novel words based on syntactic and morphological
cues. Here we test whether children can leverage this knowl-
edge when inferring the meaning of a novel word. Through
a novel word learning experiment we determine that children
can use this information, drawing different conclusions for the
most likely meanings of novel words in distinct grammatical
categories. We use a Bayesian model to formalize the higher
level knowledge that children might have about noun and ad-
jective meanings. Simulations show that children’s behavior
closely matches what we would predict on the basis of noun
and adjective meanings in the English lexicon.
Keywords: language acquisition; word learning; Bayesian in-
ference

Introduction
One of the most striking phenomena in language acquisition
is children’s ability to rapidly learn the meanings of novel
words with only limited exposure. How exactly children do
this has been researched extensively, with three lines of in-
quiry dominating the attempts to formalize this process: hy-
pothesis elimination (Berwick, 1963; Pinker, 1989; Siskind,
1996), associative learning (Colunga & Smith, 2005; Regier,
2005) and Bayesian inference (Xu & Tenenbaum, 2007). Xu
and Tenenbaum argue that Bayesian inference is superior to
hypothesis elimination and associative learning because it
uniquely allows the learner to take advantage of ‘suspicious
coincidences’ when learning words for overlapping concepts.
For example, in a word learning experiment they found that
when children were shown three Dalmatians labeled with a
novel object label, there was a strong bias for children to think
that the novel word meant Dalmatian, rather than dog, or ani-
mal. This bias was not as strong when children only saw one
Dalmatian labeled with the novel label. Neither hypothesis
elimination nor associative learning predict the effect of the
suspicious coincidence that results from the narrow distribu-
tion of exemplars on the kind hierarchy (which is in turn con-
tingent on the number of exemplars). Xu and Tenenbaum’s
model does predict this effect, via the likelihood term, which
takes into account both the number of exemplars and the size
of the hypothesis.

One key assumption that Xu and Tenenbaum relied on was
that the candidate concepts fell on a hierarchy of kinds. That
is, in their model the learner does not have to determine what
domain to generalize across, as this domain was given by
the kind hierarchy. This assumption has two implications
for their model: (1) most of the work in hypothesis selec-
tion is being done by the likelihood, as the prior probability

of each hypothesis is comparatively much less variable and
(2) it largely limits the model to the discussion of object la-
bel learning, as this is the domain that primarily uses the kind
hierarchy.

In this paper we probe the predictions of the Bayesian
model on different grammatical categories, nouns and adjec-
tives, which tend to draw from different concept hierarchies.
This allows us to better test the role of the prior probabil-
ity of a concept given a grammatical category by letting us
examine the link between grammatical category and concept
hierarchy. Toward these goals we conducted a word learn-
ing experiment that replicates Xu and Tenenbaum’s finding
with learning novel nouns, and extends the paradigm to novel
adjective learning. We find that children use the grammati-
cal category of the novel word to constrain their hypotheses
about the meaning of the novel word. This is demonstrated
through their sensitivity to the suspicious coincidence in the
distribution of exemplars on the kind hierarchy when learn-
ing nouns but not adjectives. A Bayesian model that takes
into account not only conceptual similarity but also the link
between grammatical category and concept provides a close
fit to the children’s data. Through this work we extend the
Bayesian model of word learning in ways that make it more
realistic with respect to both the structure of natural language
and the task faced by a child acquiring novel words.

Our paper is organized as follows. We first present our
word learning experiment. We then use a Bayesian model
to formalize children’s prior distribution over concepts. The
next section presents simulations comparing the model to
children’s behavior. We conclude by discussing the implica-
tions that this work has for language acquisition, in particular
the importance of considering how a learner’s prior knowl-
edge affect the way in which the data from the environment
are used in language acquisition.

Word Learning Experiment

In a novel word learning experiment children were presented
with an array of animals and vehicles and taught a novel label
(noun or adjective) for a concept. Children were then asked to
generalize their inferred concept to novel items. The stimuli
allowed generalization along both kind and property dimen-
sions. If children are able to use syntactic information to con-
strain their inference of words’ meanings, then we should ex-
pect them to generalize differently when learning nouns ver-
sus adjectives.



Figure 1: The stimuli for our experiment included 36 objects
in subordinate, basic, and superordinate vehicle and animal
categories. Half the items were striped and half spotted.

Methods

Our experiment tested two groups of children using a between
subjects design. The noun group learned two novel nouns,
and the adjective group learned two novel adjectives.
Participants Participants were 24 children (mean age =
4;0, range = 3;6-5;0) recruited from the greater College Park
area as well as an on campus preschool. Children either vis-
ited the lab with their parents or were visited by researchers
at their preschool. Four children were excluded from the final
analysis for the following reasons. One was too shy to inter-
act with the snail and three said they didn’t know when they
were asked to perform the generalization task outlined below.
Stimuli All children were presented with an array of pic-
tures (Figure 1) that included 36 items from two superordi-
nate categories on the kind hierarchy (18 vehicles and 18 an-
imals). Each category had items from several basic levels
(animals: 12 dogs, 2 cats, 2 squirrels, 2 owls; vehicles: 12
roofed cars, 2 convertibles, 2 vans, 2 trucks). One basic level
from each superordinate category had items from two subor-
dinate level categories (dogs: 6 Dachshunds and 6 Yorkshire
terriers, roofed cars: 6 taxis and 6 police cars). There were
both striped and spotted items of each item type.
Procedure A snail puppet was introduced to the child, and
the child was told that the snail spoke a funny snail language
that was mostly like English but included some new words.
The experimenter explained to the child that they would try
to figure out the snail’s words by listening to him talk about
some of the pictures. Before proceeding further, the exper-
imenter checked that both the snail and the child could see
all of the pictures in the array. This ensured that participants
were aware of the range of items in the experimental world.

During the word learning phase the snail looked at the
pictures and pointed out an item from one of the subordinate
level categories (e.g. a striped dachshund). In the noun con-

Speaker Utterance Action
Snail ‘This is a blicky

one’
points to striped
Dachshund 1

Snail ‘Look, another
blicky one’

points to striped
Dachshund 2

Snail ‘Here’s another
blicky one’

points to striped
Dachshund 3

Snail ‘I’m going to go
have a rest in my
shell’

retreats to shell

Experimenter ‘Here are some
more pictures,
can you put
circles on all the
blicky ones to
surprise the snail
when he wakes
up?’

lays out new
array of pictures
and gives the
child a set of
rings

Child — puts rings on
items that match
child’s hypoth-
esis for the
meaning of blicky

Table 1: Sample adjective trial - Noun trials are identical with
blick substituted for blicky one

dition he described it as a blick, and in the adjective condition
he described it as a blicky one. This happened 3 times, with
the snail pointing to a different striped dachshund each time.
Then the snail would get tired and retire to his shell for a nap.

While the snail slept, the experimenter initiated the test
phase, during which the child was presented with another ar-
ray of pictures and asked to place circles on the other blicks
(noun condition) or blicky ones (adjective condition). A sin-
gle trial is schematized in Table 1. The entire procedure was
repeated for a second novel word used to describe another
item from a different subordinate level (e.g. a spotted taxi).
Order of item (dog before vehicle or vice versa), described
subordinate level item (dachshund vs yorkie and taxi vs po-
lice car), and described pattern order (striped before spotted
and vice versa) were all counterbalanced across subjects.

Results
Children’s choices were coded as follows, with one response
recorded per trial. Subordinate responses were recorded if
children chose only animals/vehicles from the same subor-
dinate level as the example (e.g. only more dachshunds af-
ter being presented with dachshunds). Basic responses were
recorded if children chose from only the basic level (i.e. ei-
ther dog type after being presented with dachshunds) or from
the basic and subordinate levels. A superordinate response
was recorded if children chose only from the superordinate
level (e.g. any animal after being presented with dachshunds)
or from the superordinate level with any combination of the
lower levels. Finally, neutral responses were recorded if



children chose from anywhere on the kind hierarchy (e.g.
chose anything from the vehicle hierarchy after being shown
a dachshund).

Results are shown in Figure 2(a). In the noun condi-
tion, we replicated Xu & Tenenbaum’s finding, uncovering
a bias for the subordinate level meaning when all observa-
tions fall into the same subordinate level. In the adjective
condition however, we see a different pattern. The place-
ment of the item on the kind hierarchy had no bearing on
children’s choices, with the overwhelming majority choosing
the neutral interpretation, indicating their belief that the novel
adjective’s meaning referred just to the most salient property
(striped versus spotted) rather than the kind. Planned compar-
isons revealed that the proportion of trials that children chose
the subordinate and neutral meanings differed significantly
by condition (subordinate: t(33) = 3.49, p < 0.002, neutral:
t(26) = 3.39, p < 0.003).

Discussion
These results demonstrate that children use their knowledge
of grammatical categories, and the associated kinds of mean-
ings that correlate with these categories, when inferring the
meanings of novel words. In particular, they favor concepts
from a kind hierarchy for novel nouns, and from a property
hierarchy for novel adjectives. In one respect this result is not
new, as infants as young as 14 months have been shown to
know the mapping between grammatical and conceptual cat-
egories (Waxman & Markow, 1998; Booth & Waxman, 2003,
2009). Instead, the novelty is in showing that this mapping
constrains children’s inferences. A very low prior probability
for a hypothesis on the kind hierarchy blocks it from being
determined the most likely for a novel adjective meaning, de-
spite it being the narrowest possible hypothesis.

This finding emphasizes the role of the hypothesis space,
as the most likely hypothesis differs depending on the gram-
matical category of the word being learned. In order to deter-
mine whether children are behaving optimally with respect
to a specific hypothesis space (conditioned by grammatical
category and the information available to them in the English
lexicon), we used a Bayesian model to predict generalization
behavior from the nouns and adjectives that are likely to be
present in the children’s early lexicons.

Model
We assume the generative model shown in Figure 3. Our
model assumes that the snail in our experiment, having cho-
sen a syntactic category for the word he will teach the chil-
dren, chooses a concept to teach (such as dog, striped, or
dachshund), and then independently chooses three objects as
examples of that concept.

The children in our experiment inferred what concept a
new word referred to based on the lexical category of the
novel word (noun or adjective) and the objects the snail iden-
tified as examples of that word. Our model therefore com-
putes the probability of each concept C for a given syntactic

Figure 3: Syntactic categories P determine the parameters for
our prior over concepts C. Specific objects X are sampled
from the set of items that exemplify a concept.

Concept → Kind
→ Property
→ Kind ∧ Property

Kind → animal
→ dog
→ dachshund
→ ·· ·
→ vehicle
→ car
→ taxi

Property → spotted
→ striped

Figure 4: A probabilistic context-free grammar for concepts.
Probabilities for each expansion rule are discussed in the
Concept Prior section.

category P and set of objects X ,

P(C|X ,P) (1)

We can use Bayes’ rule to compute the posterior probabil-
ity over concepts given a set of examples and a word’s syn-
tactic category,

P(Ci|X ,P) =
P(X |Ci) ·P(Ci|P)

∑
C j∈{all concepts}

P(X |C j) ·P(C j|P)
(2)

We assume that the probability of the data X depends only on
the concept C and is independent of the syntactic category,
given the concept. Since the normalizing constant in the de-
nominator will be the same for all candidate concepts, we
only need to find the values of P(X |Ci) and P(Ci|P) for the
concepts we are considering.

Concept Prior: P(C|P)
Following Goodman, Tenenbaum, Feldman and Griffiths
(2008) ( cf. Austerweil & Griffiths, 2010), we represent con-



Figure 2: (a) Results of word learning experiment and (b) results of modeling

cepts according to the concept grammar in Figure 4, with
nonterminal nodes Kind and Property representing the di-
mensions a concept is defined along. Words like dog and
striped are defined along only one of these dimensions (Kind
and Property, respectively). Words like kitten, which must
describe a young cat, are defined along both dimensions
(Kind ∧Property). The derivation of each concept involves
first applying a rule determining the dimension of the concept
and then applying the dimension-specific rules until all termi-
nal nodes have been identified. For example, in our concept
language, the concept dog is formed by first applying the rule
Concept→ Kind and then applying the rule Kind→ dog.

If we assign probabilities to each of the rules in this concept
grammar and assume that the rules are applied independently
of one another, then the resulting PCFG will determine the
probabilities of all the concepts in our experiment. The prob-
ability of each concept would be the product of the probabil-
ities of the rules applied to form it,

P(C) = ∏
R∈{rules to form C}

P(R) (3)

The differences in the types of concepts represented by
nouns and adjectives are represented in our model through
differences in the probability distributions over the set of rules
that expand Concept to particular dimensions. We assume
children are computing this prior distribution separately for
each part of speech, keeping track of the number of nouns or
adjectives whose meanings denote a kind, a property, or both
a kind and a property. They can estimate the rule probabili-
ties from these counts using a Dirichlet-multinomial model.
Under this model, the prior over dimension expansions based
on the counts pdi,P of the productions seen by the learner of a
particular dimension di for that lexical category P is:

P(di|P) =
pdi,P +1

∑
d j∈{all dims}

pd j ,P +3
(4)

We approximated these production counts from a Mechan-
ical Turk survey where for each word in a vocabulary list of

Figure 5: Hierarchical Clustering of Experimental Item Sim-
ilarity

430 words (364 nouns and 66 adjectives) that 30-month-old
children likely know (Dale & Fenson, 1996) we asked adult
English speaking participants to judge whether the word was
best described as a kind, a property, or both. Different but
often overlapping sets of 10 people were asked to respond to
each word, and so we had a total of 22 participants in our
study. Two participants’ judgments were excluded due to an
extraordinarily high proportion of Both responses (proportion
Both> 0.36, over two standard deviations outside the mean
proportion of Both responses). While the children in our ex-
periment (3-5 year-olds) were much older than 30 months,
we believe that the 30-month-old children’s vocabulary list
is appropriate for our purposes, since the children in our ex-
periments are almost certainly familiar with these words and
differ only in additional words they might know. We assume
that the distribution of noun and adjective dimensions in this
set of words is representative of that of the larger and more
varied set of words that our 3-5 year-old participants are fa-
miliar with,

For kinds, we assume a structure like Xu and Tenenbaum



(2007) where the probability of a concept depends on its dis-
tinctiveness. For these measures we use a hierarchical cluster
tree as in Figure 5. To make this tree, we conducted a similar-
ity judgment study, similar to Xu and Tenenbaum’s using the
items that the snail had labeled in our experiment. Our par-
ticipants, 26 students from the University of Maryland who
received course credit for their participation, rated the simi-
larity of all possible pairs of the 36 pictures on a scale from 1
(not similar at all) to 9 (very similar).

To incorporate cluster distinctiveness, Xu and Tenenbaum
measure the branch length (which represents the Euclidean
distance) between the concept node and its parent node. By
this measure, the further a particular node is from its parent,
the more distinct it is considered to be. Where K is the set
of all Kind concepts, the probability of a concept Ci given
that it is defined over the Kind dimension is the branch length
normed over all Kind concepts,

P(Ci|Kind) =
height(parent(Ci))−height(Ci)

∑
C j∈K

height(parent(C j)−height(C j)
(5)

For properties, we assume that in our experiment they are
chosen from a Multinomial Distribution with each property
equally likely to be selected. Since there were only two very
salient properties in our experiment, we give each property
the probability of 1

2 ,

P(C|Property) =
1
2

(6)

Example Derivation of a Concept Prior Under this model
of the concept prior, the prior probability that the noun blick
refers to the concept Dachshund will have the following
derivation. First, we have production counts for nouns that
describe kinds pKind,Noun that were found in our Mechanical
Turk study (we found that on average 308 out of 336 nouns
were categorized as kinds). From this production count and
the total production counts for nouns, we derive the probabil-
ity of expanding Concept to Kind.

P(Kind|Noun) =
pKind,Noun +1

∑
d∈{Kind, Property, Both}

pd,Noun +3

=
308+1
336+3

= 0.91

(7)

Then we find the probability of the concept being
Dachshund given that it is defined only along the Kind di-
mension, using the height of the branch Dachshund and
its immediate parent dog. These heights were 0.1259 and
0.3115, respectively.

P(dachshund|Kind) =
height(parent(dog))−height(dog)

∑
C∈K

height(parent(C)−height(C)

=
0.1856
1.7576

= 0.1056

(8)

Finally, to compute the prior probability of the concept
Dachshund given that it is a noun, we multiply the proba-
bility of expanding Concept to Kind by the probability of the
concept being Dachshund.

P(Dachshund|Noun) = P(Kind|Noun) ·P(Dachshund|Kind)

= 0.91 ·0.1056 = 0.09696
(9)

Concept Likelihood: P(X |C)

We assume that, given a set of objects that are examples of a
concept C, each object is equally likely to be chosen by the
snail1. Therefore, the probability of the data given a concept
is proportional to the size of the set of things matching that
concept. For example, for the concept dog, the probability
of picking a particular dog, Fido, is inversely proportional to
the number of dogs there are in the scene. So if n objects
are chosen by the snail as examples of a concept C, and these
objects are plausible examples of the concept,

P(X |C) =

(
1
|C|

)n

(10)

Simulations
For each experimental trial we computed the posterior prob-
ability over concepts using both the noun and adjective pri-
ors. We assumed that on each trial children were sampling
a concept from the posterior distribution over concepts given
the syntactic category of the novel word. Thus the posterior
probability over concepts as generated by the model should
give us the frequency with which a child should show any
given behavior. In order to be able to compare the model
to the experimental data, we sorted the concepts into the
same categories that we used for analyzing the experimental
data: subordinate, basic, superordinate and neutral. For ex-
ample, given the data striped Dachshund, the candidate con-
cepts are striped Dachshund, Dachshund, striped dog, dog,
striped animal, animal, or striped. From this set of candi-
dates, striped Dachshund and Dachshund mapped onto the
subordinate level, striped dog and dog mapped onto the basic

1Xu and Tenenbaum use a different estimate of category sizes for
kinds, which is based on the same heirarchy as their concept prior.
We found little difference when we compared the our own likelihood
distributions with those computed by Xu and Tenenbaum’s methods
on our experimental items. A very similar ordering applied over
concepts, and each item was on the same order of magnitude for
both measures of the likelihood.



level, striped animal and animal mapped onto the superordi-
nate level and striped mapped on the neutral level.

The results of our model are shown in Figure 2(b). Overall
the model appears to provide a very close fit to the experi-
mental data, with a much higher posterior probability for the
subordinate level given a noun, and a much higher probability
for the neutral level given an adjective.

Discussion
In this paper we have shown that while children tend to map
novel nouns onto a kind hierarchy, they prefer to map novel
adjectives onto a property hierarchy. This behavior is pre-
dicted if children use their knowledge of grammatical cate-
gories and the distributions of different concept types within
these categories to constrain the space of hypothesized mean-
ings when learning novel words. A Bayesian model trained
on the distribution of concepts across grammatical categories
in the English lexicon predicts the same generalization pat-
tern. Together these results suggest that not only are chil-
dren able to use what they know about grammatical categories
when inferring the meanings of novel words, the way they do
this is predicted by the distributions of concept types across
gramamtical categories in English. Moreover, the constraints
imposed on inference by grammatical category are powerful
enough to overcome the effect of the size principle on the
likelihood.

These findings have several implications for language ac-
quisition and models of language acquisition. First, while the
‘size principle’ has received considerable attention as a so-
lution to the word learning problem, this work demonstrates
that the beliefs children bring to the word learning task also
play a key role in word learning. Second, we can ask how
children behave with respect to concept hierarchies in lan-
guages that collapse the distinction between nouns and ad-
jectives (e.g. Georgian). Does the size principle play a role
only to the extent that nouns are likely to draw from the kind
hierarchy? Third, as these beliefs are attributable to the dis-
tribution of concept types across grammatical categories in
the children’s own lexicons, there are obvious extensions of
this work to modeling the infant word learning by weakening
(or making nonexistent or unavailable) the link between be-
tween grammatical category and concept hierarchy. There are
several findings that would be interesting to model this way,
including (1) that 11-month-olds make the same generaliza-
tions for words presented as nouns and adjectives and these
generalizations are neutral with respect to kind vs. property
meanings (Waxman & Booth, 2003), or (2) that the noun-kind
link is established earlier than the adj-property link (Booth &
Waxman, 2003, 2009). Finally, we can ask to what degree a
group of exemplars’ distribution on a given concept hierarchy
is used in acquiring linguistic phenomena that extend beyond
word meanings (e.g. word classes).
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